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Simplifications as N → ∞

• Topological diagrammatic expansion
⇒ planar diagrams dominate

• Factorization:  <AB>→<A><B>

• Closed loop equations:  

• Vanishing meson, glueball widths

• Scattering amplitudes ∼〜～	 (N)2-#particles

• Baryons ∼〜～ solitons

• Volume independence

Why?

Rank of gauge group
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WΓ = aΓ′

Γ WΓ′ + bΓ′Γ′′

Γ WΓ′WΓ′′
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Large N limit = Thermodynamic limit

Phase transitions, spontaneous symmetry breaking, coexisting equilibrium states:

• Possible in large volume limit.
Cluster decomposition:*

Diagnostic of extremal (pure) equilibrium state in large volume limit

• Possible in large N limit.

Factorization:

Diagnostic of extremal (pure) state in large N limit

“decent” gauge invariant operators

 volume averaged operators

*Assuming finite correlation length
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〈AB〉 = 〈A〉〈B〉 + O(1/V )

〈AB〉 = 〈A〉〈B〉 + O(1/N)
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Large N limit = Classical limit

N → ∞:  quantum dynamics → classical dynamics

• Large N coherent states {|u>} ∼〜～ classical phase space

• Quantum operators → classical observables

➡    a(u) = limN →∞ <u|A|u>

• Vanishing overlaps:  <u|u’>	 ∼〜～ e-N2 f(u,u’)

➡   limN →∞ <u|AB|u> = limN →∞ <u|A|u><u|B|u> = a(u) b(u)

• Classical action:

➡ ground state properties, spectrum, scattering amplitudes, ...
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Scl = lim
N→∞

1
N2

∫
dt 〈u|i∂t − Ĥ|u〉
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Coherent states

Produced by action of  “coherence group” G:  |u> = U|0>, U ∈ G

Coherence group G generated by invariant “coordinates” & “momenta”:

{
qα, pβ

}

{
!φα · !φβ , !πα · !φβ

}

{
trUΓ, trEαUΓ

}

Point particles

N-component vectors   

U(N) gauge theory

Wilson loop
Electric field
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Fermions at large N

Fundamental representation fermions:

• fermion loops ➨ O(1/N) suppression in Feynman diagrams

• generate subleading O(1/N) corrections to Scl

• leading large N gauge dynamics unaffected

• quenched approximation [no det(D)] in lattice gauge theory OK ?

• no difference between μB  and μI at large N ?

6

True

Depends...



L. Yaffe, Swansea, July 8, 2009

Factorization & the sign problem

• Det D = |Det D| e i NΘ  

• phase Θ can be non-zero, O(1) when μB ≠ 0

• <Θ> = 0 but <eiNΘ> ≠ 1

• Quenched approximation:

• Wrong in hadronic phase,  T<TcYM, with unbroken Z(N) center symmetry, large phase fluctuations

• OK in deconfined phase, T>TcYM, with broken Z(N) center symmetry, small phase fluctuations

• Perturbation theory can mislead!
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〈O〉QCD =
〈O det D〉YM

〈det D〉YM

?=
〈O〉YM 〈det D〉YM

〈det D〉YM
= 〈O〉YM

Large N factorization

Dirac operator
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Reality check
Above d=2:

• Can’t sum planar diagrams

• Can’t solve N=∞ loop equations

• Can’t analytically minimize Scl on infinite-dimensional phase space

• Difficult to formulate useful finite-dimensional truncation

• Can use loop equations, or coherent state dynamics, to compare large N limits 
of differing theories

But...
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Large N equivalences

Differing finite N gauge theories can have identical* large N limits:

*With important caveats...

Gauge group independence
U(N) vs. O(N) vs. Sp(N)

Lovelace 1982

Volume independence Eguchi & Kawai 1982, Bhanot, Heller & Neuberger 
1982, Gonzalez-Arroyo & Okawa 1983, ...

Orbifold projections Bershadsky & Johansen 1998, Schmaltz 1998,
Strassler 2001, KUY 2003, ...

Orientifold projections Armoni, Shifman & Veneziano 2003, ...
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Orbifold projections
“Parent” theory:

Choose discrete symmetry P ⊂ (gauge ⊗ spacetime ⊗ flavor)
operators, states invariant under P ≡ “neutral”,  non-invariant ≡ “non-neutral” or “twisted”

Eliminate degrees of freedom not invariant under P

“Daughter” theory:

May have “emergent” non-gauge symmetry Q  not present in parent
operators, states invariant under Q ≡ “neutral”,  non-invariant ≡ “non-neutral” or “twisted”

Operator mapping: 

{ neutral single-trace operators }parent ⇔ { neutral single-trace operators }daughter
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Neutral sector equivalence

“Invertible” 
projections ➡  non-perturbative equivalence of dynamics within neutral sectors

➡  
non-perturbative equivalence of leading large N behavior
of connected correlators of neutral operators  provided  symmetries 
defining neutral sector not spontaneously broken

➡    
directly relate leading large N behavior of free energy,
as well as spectrum, partial decay widths & scattering amplitudes of 
neutral glueballs & mesons
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 Z2 projection “duality” web

K =
[

1
−1

]

gauge
U(2N) −→ U(N)2

C = charge conj. U(2N) −→ O(2N)

J =
[
−1

1
]

gauge
O(2N) −→ U(N)

C × J U(2N) −→ Sp(2N)

projection gauge group
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2[U(2N)]

[Sp(2N)] 2 [Sp(N)]2

2[U(N)]

[O(N)]2[O(2N)] 2O(4N)

Sp(4N)

U(N)

Sp(2N)

O(2N)

U(2N)

K =
[

1
−1

]

gauge
U(2N) −→ U(N)2

C = charge conj. U(2N) −→ O(2N)

J =
[
−1

1
]

gauge
O(2N) −→ U(N)

C × J U(2N) −→ Sp(2N)

projection gauge group
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Some specific examples

projection parent theory → daughter theory emergent daughter theory 
symmetry

orbifold U(2N) SYM → U(N)2 YM w. bifund. ferm. U(N)1 ↔ U(N)2

orientifold

U(N) SYM           

SO(2N) SYM

U(N) QCD(AS)

charge conjugation

volume reduction U(N) YM on (KL)d → U(N) YM on (L)d (ZN)d
  center

J

J (-1)F
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Symmetry realization engineering

Example:  ZN center symmetry in compactified U(N) YM

“deconfinement” = failure of original Eguchi-Kawai proposal

SYM
center−stabilized = SYM

Wilson +
"N/2#∑

n=1

cn |trLn|2 , cn sufficiently positive

“Fixes”: quenched EK ✘

twisted EK ✘

YM → QCD(Adj) ✓
YM → center-stabilized YM ✓
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Numerical utility?

orbifold
equivalence

QCD(Adj)QCD(AS/S)
orientifold equivalence

orbifold!orientifold
equivalence

combined

inf

0

L

0

L

inf

C

deformation equivalence

ordinary Yang−Mills deformed Yang−Mills

orbifold
equivalence

combined
deformation−orbifold

∞

c

∞

0

L

0

L

equivalence

Reproduce C-even properties of large volume, 
large-N QCD(AS) using single-site SU(N) 
matrix model with light adjoint fermions

Reproduce properties of large volume, 
large-N YM using single-site matrix 
model with center-stabilizing terms
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Some open questions

• Does U(N)2 Yang-Mills with sufficiently light bifundamental fermions spontaneously break the gauge group 
interchange symmetry?

• Does QCD(AS) in large volume ever spontaneously break charge conjugation symmetry?

• How large must N be in QCD(Adj), or center-stabilized YM, for accurate volume independence down to a 
single-site?  

• Is numerical simulation cost of single-site center-stabilized YM manageable (relative to large volume 
simulations) or prohibitive?

• Can large N equivalences improve understanding of phenomenologically interesting models of new strong 
dynamics sectors?

• Can one formuate accurate finite-dimensional truncations of dynamics on infinite dimensional large N 
phase space of gauge theories?
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