Large N Limits & Equivalences

Laurence G. Yaffe University of Washington

Based on work done in collaboration with Pavel Kovtun and Mithat Ünsal

Refs: RMP 54, 407 (1982), hep-th/0311098, hep-th/0411177, hep-th/0505075, hep-th/0608180, hep-th/0702021, arXiv:0803.0344

Large N@ Swansea, July 8, 2009

Simplifications as $N \rightarrow \infty$ Rank of gauge group

- Topological diagrammatic expansion \Rightarrow planar diagrams dominate
- Factorization: $\langle AB \rangle \rightarrow \langle A \rangle \langle B \rangle$
- Closed loop equations: $W_{\Gamma} = a_{\Gamma}^{\Gamma'} W_{\Gamma'} + b_{\Gamma}^{\Gamma'\Gamma''} W_{\Gamma'} W_{\Gamma''}$
- Vanishing meson, glueball widths
- Scattering amplitudes $\sim (N)^{2-\text{#particles}}$
- Baryons ~ solitons
- Volume independence

Large Nlimit = Thermodynamic limit

Phase transitions, spontaneous symmetry breaking, coexisting equilibrium states:

• Possible in large volume limit. Cluster decomposition:*

 $\langle AB \rangle = \langle A \rangle \langle B \rangle + O(1/V)$ volume averaged operators

Diagnostic of extremal (pure) equilibrium state in large volume limit

• Possible in large N limit.

Factorization:

 $\langle AB \rangle = \langle A \rangle \langle B \rangle + O(1/N)$ "decent" gauge invariant operators

Diagnostic of extremal (pure) state in large N limit

*Assuming finite correlation length

Large N limit = Classical limit

 $N \rightarrow \infty$: quantum dynamics \rightarrow classical dynamics

- Large N coherent states $\{|u\rangle\} \sim$ classical phase space
- Quantum operators \rightarrow classical observables

 $a(u) = \lim_{N \to \infty} \langle u | A | u \rangle$

• Vanishing overlaps: $\langle u | u' \rangle \sim e^{-N^2 f(u,u')}$

 $\Rightarrow \lim_{N \to \infty} \langle u | AB | u \rangle = \lim_{N \to \infty} \langle u | A | u \rangle \langle u | B | u \rangle = a(u) b(u)$

• Classical action: $S_{\rm cl} = \lim_{N \to \infty} \frac{1}{N^2} \int dt \langle u | i \partial_t - \hat{H} | u \rangle$

ground state properties, spectrum, scattering amplitudes, ...

Coherent states

Produced by action of "coherence group" $G: |u\rangle = U|0\rangle, U \in G$

Coherence group G generated by invariant "coordinates" & "momenta":

Point particles	$\{q_{\alpha}, p_{\beta}\}$
N-component vectors	$\{ec{\phi}_lpha\cdotec{\phi}_eta,ec{\pi}_lpha\cdotec{\phi}_eta$
<i>U</i> (<i>N</i>) gauge theory	$\{\operatorname{tr} U_{\Gamma}, \operatorname{tr} E_{\alpha} U$

Electric field Wilson loop

Fermions at large N

Fundamental representation fermions:

- fermion loops $\Rightarrow O(1/N)$ suppression in Feynman diagrams
- generate subleading O(1/N) corrections to S_{cl}
- leading large N gauge dynamics unaffected
- quenched approximation [no det(D)] in lattice gauge theory OK ?
- no difference between μ_B and μ_I at large N?

True True Depends...

Factorization & the sign problem

$$\langle \mathcal{O} \rangle_{\text{QCD}} = \frac{\langle \mathcal{O} \det D \rangle_{\text{YM}}}{\langle \det D \rangle_{\text{YM}}} \stackrel{?}{=} \frac{\langle \mathcal{O} \rangle_{\text{YM}} \langle \det D \rangle_{\text{YM}}}{\langle \det D \rangle_{\text{YM}}} \frac{\langle \mathcal{O} \rangle_{\text{YM}} \langle \det D \rangle_{\text{YM}}}{\langle \det D \rangle_{\text{YM}}}$$

- Det $D = |\text{Det } D| e^{iN\Theta}$
 - phase Θ can be non-zero, O(1) when $\mu_B \neq 0$
 - $\langle \Theta \rangle = 0$ but $\langle e^{iN\Theta} \rangle \neq 1$
- Quenched approximation:
 - Wrong in hadronic phase, $T < T_c^{YM}$, with unbroken Z(N) center symmetry, large phase fluctuations
 - OK in deconfined phase, $T > T_c^{YM}$, with broken Z(N) center symmetry, small phase fluctuations
- Perturbation theory can mislead!

$=\langle \mathcal{O} angle_{ m YM}$

large phase fluctuations all phase fluctuations

Reality check

Above d=2:

- Can't sum planar diagrams
- Can't solve $N = \infty$ loop equations •
- Can't analytically minimize S_{cl} on infinite-dimensional phase space
- Difficult to formulate useful finite-dimensional truncation

But...

• Can use loop equations, or coherent state dynamics, to compare large N limits of differing theories

Large N equivalences

Differing finite N gauge theories can have identical* large N limits:

Gauge group independence U(N) vs. O(N) vs. Sp(N)

Volume independence

Orbifold projections

Orientifold projections

Lovelace 1982

Eguchi & Kawai 1982, Bhanot, Heller & Neuberger 1982, Gonzalez-Arroyo & Okawa 1983, ...

Bershadsky & Johansen 1998, Schmaltz 1998, Strassler 2001, KUY 2003, ...

Armoni, Shifman & Veneziano 2003, ...

*With important caveats...

Orbifold projections

"Parent" theory:

Choose discrete symmetry $P \subset$ (gauge \otimes spacetime \otimes flavor) operators, states invariant under $P \equiv$ "neutral", non-invariant \equiv "non-neutral" or "twisted" Eliminate degrees of freedom not invariant under P"Daughter" theory:

May have "emergent" non-gauge symmetry Q not present in parent operators, states invariant under $\mathcal{Q} \equiv$ "neutral", non-invariant \equiv "non-neutral" or "twisted"

Operator mapping:

{ neutral single-trace operators }_{parent} \Leftrightarrow { neutral single-trace operators }_{daughter}

Neutral sector equivalence

"Invertible" projections

non-perturbative equivalence of dynamics within neutral sectors

non-perturbative equivalence of leading large N behavior of connected correlators of neutral operators *provided* symmetries defining neutral sector not spontaneously broken

directly relate leading large N behavior of free energy, as well as spectrum, partial decay widths & scattering amplitudes of neutral glueballs & mesons

Z₂ projection "duality" web

Some specific examples

projection	parent theory \rightarrow daughter theory	emerge
orbifold	$U(2N)$ SYM $\rightarrow U(N)^2$ YM w. bifund. ferm.	<i>U</i> (,
orientifold	SO(2N) SYM $J = U(N) SYM$ $J = U(N) QCD(AS)$	char
volume reduction	$U(N)$ YM on $(KL)^d \rightarrow U(N)$ YM on $(L)^d$	(2

ent daughter theory symmetry

 $(N)_1 \leftrightarrow U(N)_2$

rge conjugation

 Z_N)^d center

Symmetry realization engineering

Example: Z_N center symmetry in compactified U(N) YM

"deconfinement" = failure of original Eguchi-Kawai proposal

"Fixes":

quenched EK

twisted EK

 $YM \rightarrow QCD(Adj)$

 $YM \rightarrow$ center-stabilized YM

$$S_{\text{center-stabilized}}^{\text{YM}} = S_{\text{Wilson}}^{\text{YM}} + \sum_{n=1}^{\lfloor N/2 \rfloor} c_n |\operatorname{tr} L^n|^2, \quad c_n$$

X

X

Numerical utility?

Reproduce C-even properties of large volume, large-N QCD(AS) using single-site SU(N) matrix model with light adjoint fermions

ordinary Yang-Mills

deformed Yang-Mills

Reproduce properties of large volume, large-N YM using single-site matrix model with center-stabilizing terms

Some open questions

- Does $U(N)^2$ Yang-Mills with sufficiently light bifundamental fermions spontaneously break the gauge group interchange symmetry?
- Does QCD(AS) in large volume ever spontaneously break charge conjugation symmetry? •
- How large must N be in QCD(Adj), or center-stabilized YM, for accurate volume independence down to a single-site?
- Is numerical simulation cost of single-site center-stabilized YM manageable (relative to large volume • simulations) or prohibitive?
- Can large N equivalences improve understanding of phenomenologically interesting models of new strong dynamics sectors?
- Can one formuate accurate finite-dimensional truncations of dynamics on infinite dimensional large N phase space of gauge theories?