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Integrals and random events
Random numbers

Random number generators
A simple generator

Part I

Pseudorandom number generators
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Integrals and random events
Random numbers

Random number generators
A simple generator

Integrals and random numbers

Simple problem: compute the integral below:
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Integrals and random events
Random numbers

Random number generators
A simple generator

Random numbers

Physical approach: construction of a cosmic ray detector

area ∝ number of events per second

We need to know the number of events per unit area⇒ the
detector has known area

Numerical computation⇒ code for the generation of random
numbers
Deterministic algorithm for the generation of random numbers
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Random numbers

Physical approach: construction of a cosmic ray detector

area ∝ number of events per second

We need to know the number of events per unit area⇒ the
detector has known area

Numerical computation⇒ code for the generation of random
numbers
Deterministic algorithm for the generation of random numbers

Contradiction?
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Integrals and random events
Random numbers

Random number generators
A simple generator

Random numbers

Physical approach: construction of a cosmic ray detector

area ∝ number of events per second

We need to know the number of events per unit area⇒ the
detector has known area

Numerical computation⇒ code for the generation of random
numbers
Deterministic algorithm for the generation of random numbers

Contradiction?
No: PSEUDOrandom numbers
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Integrals and random events
Random numbers

Random number generators
A simple generator

Random number generators

Algorithm that generates a flat distribution P(x) in the interval
[0,1] ∫ b

a
P(x)dx = b − a, 0 ≤ a ≤ b < 1

P̄ is then homogeneous in the interval [A,B[

P̄(x) = A + (B − A)× P(x)

Other probability distributions can be obtained from the
homogeneous distribution

e.g. Box-Müller transformation⇒ gaussian distribution
Biagio Lucini Monte Carlo Methods



Integrals and random events
Random numbers

Random number generators
A simple generator

Properties of a good generator

Correct statistical distribution (characteristic time τS)
Long period (characteristic time τP)
Absence of correlations (characteristic time τC)
Independent sequences for (semi-)independent inputs
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Integrals and random events
Random numbers

Random number generators
A simple generator

Properties of a good generator

Correct statistical distribution (characteristic time τS)
Long period (characteristic time τP)
Absence of correlations (characteristic time τC)
Independent sequences for (semi-)independent inputs

How good a generator is depends on how long we need to use
it for: τ � min(τS, τP , τC)
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Integrals and random events
Random numbers

Random number generators
A simple generator

Linear Congruential Method

xi = [(a× xi−1 + b) mod (c)] xi ,a, b, c ∈ N
r = xi/c

How good the generator is depends on the choice of the
parameters. In particular, the period is related to c
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Integrals and random events
Random numbers

Random number generators
A simple generator

Very bad generator

a = 121, b = 0, c = 6133
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Integrals and random events
Random numbers

Random number generators
A simple generator

Good generator

a = 135121, b = 0, c = 61331237
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Comparison with grid methods
Example: computation of π

Part II

Integration by Monte Carlo methods
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Comparison with grid methods
Example: computation of π

Monte Carlo vs. Grid methods

Grid Methods

Systematic error ∝ O(1/Ns/d )

for instance, for the Simpson method s = 4

Monte Carlo methods

Systematic error ∝ O(1/
√

N)

Monte Carlo methods become convenient for a large number of
integration variables
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Comparison with grid methods
Example: computation of π

Computation of π

−1

−1 1

1

π/4 = Events inside the circle / Total number of eventsBiagio Lucini Monte Carlo Methods



Comparison with grid methods
Example: computation of π

Algorithm for the computation of π

generate pairs of random numbers in [-1;1[
compute how many pairs fall inside the circle
take the ratio of those over the total number of generated
events

A more efficient method

I =

∫
D

F (x)dx =
1
V

∫
D

F (x)Vdx = V

∫
D F (x)dx∫

D dx
' V

N

∑
f (xi)
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Comparison with grid methods
Example: computation of π

Convergence of the estimate
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Example: gaussian distribution
Markov chains

Algorithms

Part III

Monte Carlo in Statistical Mechanics

Biagio Lucini Monte Carlo Methods



Example: gaussian distribution
Markov chains

Algorithms

A simple example

H = x2

The partition function

Z =

∫
dx e−βH , β = 1/T

is exactly computable

P(x) = e−βH/Z probability distribution

〈U〉 =
1
Z

∫
dx H(x) e−βH =

1
2β

internal energy
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Example: gaussian distribution
Markov chains

Algorithms

Dynamics

Ergodic hypothesis: average over a statistical ensemble '
average in time

Problem: give dynamics to the system

Fundamental property: at equilibrium, the configurations must
follow Boltzmann distribution
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Example: gaussian distribution
Markov chains

Algorithms

Markov chains

Sequence of configurations Cn
m in which Ct

m depends only from
Ct−1

n according to a probability distribution Pnm (upper index:
time; lower index: number of the configuration)

Irreducible if from any Cj we can reach Cl l > j , i.e. if a time k
exists such that Pk

jl =
∑

i1...in Pji1Pi1i2 ...Pin l 6= 0 for any j , l

Aperiodic if Pk
ii 6= 1 for any i , k

State Ci positive if it occurs on average for a finite time
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Example: gaussian distribution
Markov chains

Algorithms

Equilibrium distribution

{Ci} irreducible and aperiodic Markov chain with only positive
states

the equilibrium distribution exists and is unique
(⇒ independence from the initial state)

lim
N→∞

PN
ij = Pj

the equilibrium distribution is stationary

Pj =
∑

i

P1
ij Pi

if the variance of the recurring time is finite∑
i

PiO(Ci) = 〈O〉 = lim
N→∞

1
N

N∑
j=1

O(Cj)
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Example: gaussian distribution
Markov chains

Algorithms

Equilibrium distribution

{Ci} irreducible and aperiodic Markov chain with only positive
states

the equilibrium distribution exists and is unique
(⇒ independence from the initial state)
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Example: gaussian distribution
Markov chains

Algorithms

Detailed balance

Monte Carlo dynamics: any Markovian dynamics

Problem: given a Hamiltonian, write a Markovian dynamics

Necessary condition unknown

Sufficient condition: detailed balance

e−βH(Ci )Pij = e−βH(Cj )Pji

Still freedom on the choice of Pij
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Example: gaussian distribution
Markov chains

Algorithms

Metropolis Algorithm

Pmetro = min(1,e−β∆H) , ∆H = Hnew − Hold

If the new configuration is not accepted, we replicate the
previous one
Rejection probability minimised if

we update one variable at a time
the new proposed value is “close” to the previous one

A criterion for the acceptance is Naccepted/Ntrial = 0.5
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Example: gaussian distribution
Markov chains

Algorithms

Heath Bath Algorithm

Phb ∝ e−βHnew

The HB probability does not depend on the previous value of
the variable we want to update

Compared to Metropolis
advantage: better exploration of the configuration space
disadvantage: requires random number with the same
probability distribution as the system
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Example: gaussian distribution
Markov chains

Algorithms

Monte Carlo example

1 decide the structure of the program and the variables we
need to use

2 choose an update algorithm and a starting point
3 discard the configuration needed to reach equilibrium
4 measure observables after one or more updates
5 compute the averages at the end of the program or better

store observables in a file
6 use any possible trick to reduce the running time

Example
Gaussian system with dynamics

xn+1 = xn − 2ar + a , r random ∈ [0,1[
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Path Integrals and Monte Carlo
Discretised and continuum physics

Part IV

Monte Carlo methods in Quantum Mechanics
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Path Integrals and Monte Carlo
Discretised and continuum physics

Path Integrals in Quantum Mechanics

An alternative way to formulate Quantum Mechanics (due to
Feynman) is the path integral

For a system with mass m subject to a potential V (x) in
addition to the Hamiltonian H = (1/2m)p2 + V (x) we define the
Lagrangian L = (1/2)mẋ2 − V (x)

The probability amplitude of having xt0 at time t0 and xf at time
tf is

〈xf (t)|e−iHt |x0(0)〉 =

∫
(Dx) eiS, S =

∫ tf

t0
d tL

and (Dx) is a formal expression that means “integration over all
possible paths connecting x0 and xf
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Path Integrals and Monte Carlo
Discretised and continuum physics

Wick rotation

The weighting with the action of the paths involves a complex
integral that is not suitable for numerical computations

We perform the Wick rotation t → it and define the Euclidean
version of L and S

LE =
1
2

mẋ2 + V (x) , SE =

∫ tf

t0
d tLE

〈xf (t)|e−iHt |x0(0)〉 can be obtained by continuing analytically∫
(Dx) e−SE ,

Analogy with a statistical mechanical system with Hamiltonian
SE
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Path Integrals and Monte Carlo
Discretised and continuum physics

Path integral and ground state

for Z , integrate over all possible initial and final x , with the
condition xf = x0
one can prove that with this choice

lim
tf→∞

Z = e−E0tf |c0|2

Expectation values of observables over the ground state
are given by

〈O1(t1) . . . On(tn)〉 = Z−1
∫

O1(t1) . . . On(tn) (Dx) e−SE ,

Note the analogy with ensemble averages in Statistical
Mechanics

This formulation is particularly suited for extracting information
about the ground states and the first exited (see later)
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Path Integrals and Monte Carlo
Discretised and continuum physics

Discretisation

Dx is a formal symbol, which needs to be defined
one possibility is to divide the temporal extension tf in N
steps of interval a such that Na = tf (temporal lattice)
the original theory is recovered in the limit a→ 0⇒ need
to choose a small a (compared to the time scale of the
system)
with this choice Dx =

∏
i dx(t = ia), i.e. a finite but large

number of integrals has to be performed⇒ Monte Carlo
integration is a good choice
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Path Integrals and Monte Carlo
Discretised and continuum physics

Continuum limit

for finite a the solution is distorted by discretisation effects
(see later for an example with the harmonic oscillator)
this effect disappears in the smooth limit a→ 0⇒ need to
work with small a
remember that tf has to be large
a good choice takes into account these two requirements
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Analysis of uncorrelated data
Analysis of correlated data

Extrapolation

Part V

Analysis of Monte Carlo data
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Analysis of uncorrelated data
Analysis of correlated data

Extrapolation

Probability

Probability distribution P(x)

f̄ = 〈f (x)〉 =

∫
f (x)P(x)dx

Let us define

x̄ = 〈x〉 average
σ2 = 〈(x − x̄)2〉 = 〈x2〉 − x̄2 variance

σ is called standard deviation
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Analysis of uncorrelated data
Analysis of correlated data

Extrapolation

Gaussian Distribution

P(x) =
1

σ
√

2π
e−

(x−x̄)2

2σ2

95% of the measurements are within 2σ from the average

Central limit theorem: for N →∞ the averages of the
measurements are distributed according to a Gaussian
distribution with average the real value and variance σ2/N
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Analysis of uncorrelated data
Analysis of correlated data

Extrapolation

Bias

We have a bias when the average of the estimates does not
coincide with the true value

bias ∝ O(1/N)

This is irrelevant in the limit of infinite measurements

It is important to remove the bias when we average non-linear
functions of the measured value.
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Analysis of uncorrelated data
Analysis of correlated data

Extrapolation

Average and Error

Estimate for the average

xm =
1
N

∑
i

xi

Unbiased estimator of the variance

σ2
m = =

1
N(N − 1)

∑
i

(xi − xm)2

N < 20⇒ a correcting factor is needed
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Analysis of uncorrelated data
Analysis of correlated data

Extrapolation

Thermalisation

The starting point is arbitrary

Equilibrium distribution obtained after a time τeq

Strategy: discard nτeq sweeps at the beginning

For a run with N measurements
weight of initial sweeps ∝ n/N
statistical error ∝ 1/

√
N

↪→ we do not need an exact estimate of τeq
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Analysis of uncorrelated data
Analysis of correlated data

Extrapolation

Thermalisation

Gaussian system
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Analysis of uncorrelated data
Analysis of correlated data

Extrapolation

Common sense rules
τeq � N: we can be cautious and discard more sweeps
than strictly needed
τeq < N: we need to estimate τeq carefully

Biagio Lucini Monte Carlo Methods



Analysis of uncorrelated data
Analysis of correlated data

Extrapolation

Correlations

Hypothesis for the Gaussian analysis: uncorrelated data
The independence among the data means that only the
statistical weight of the configurations determines the history of
the system

However Monte Carlo dynamics limits the possibilities of
moving in configuration space

Example
Dinamics xn+1 = xn − 2ar + a
Problem: remove correlations
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Analysis of uncorrelated data
Analysis of correlated data

Extrapolation

Correlation time

For a given observable and given dynamics
Exponential correlation time

C(τ) = 〈O(t)O(t + τ)〉 ∝ e−τ/τexp

Integrated correlation time

τint = 1 + 2
N−1∑
τ=1

C(τ)

For the error σ2 = σ2
naiveτint

Moreover 2τexp ' τint
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Analysis of uncorrelated data
Analysis of correlated data

Extrapolation

Results for the Gaussian system

Expected values for β = 0.5: x = 0.0 and U = 1.0

Naive results x = 0.0083(33) and U = 0.992(5)

Results for x

τexp = 1.90(4) ⇒ 〈x〉 = 0.0083(65)

Results for U

τexp = 1.87(3) ⇒ 〈U〉 = 0.992(9)

For τexp the summation is truncated at τ = 4τexp
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Analysis of uncorrelated data
Analysis of correlated data

Extrapolation

Binning

Binning: averages over groups of M consecutive data

M (often taken as 2k ) is the amplitude of the binning interval

M � τ ⇒ the partial averages are independent⇒ we can
apply simple Gaussian analysis to them

M has to be chosen in such a way that we have at least 20
partial averages

We still have to deal with the bias
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Analysis of uncorrelated data
Analysis of correlated data

Extrapolation

Jack-Knife method

It’s a method for eliminating the bias
Jack-Knife sample y1, . . . , yN starting with partial averages
(binned data) y1, . . . , yN

yk =
1

N − 1

∑
j 6=k

xj

Elimination of the bias

f̄ = 1
N
∑

f (yk ) average

σ2
f = N−1

N
∑

(f (yk )− f̄ )2 variance

Biagio Lucini Monte Carlo Methods



Analysis of uncorrelated data
Analysis of correlated data

Extrapolation

Jack-Knife error for the Gaussian system

One chooses the error at the plateau that has the minimal error
Biagio Lucini Monte Carlo Methods



Analysis of uncorrelated data
Analysis of correlated data

Extrapolation

Fit

They are used to deduce the parameter of a theoretical
behaviour from a sample of measurements

The parameters are obtained by minimising

χ2(a1, . . . ,am) =
∑

j

(
y j − f (x j

1, . . . , x
j
n; a1, . . . ,am)

σj

)2

Defining dof as the number of data minus the number of free
parameters, a good fit is identified by χ2/dof ' 1

The error on the parameters is obtained by a Jack-knife
analysis
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Analysis of uncorrelated data
Analysis of correlated data

Extrapolation

Example: Monte Carlo error for π

We expect |π − π(N)| = a/N1/2 ⇒ we want to determine a

Result a = 1.23± 0.29 with χ2/dof = 0.14 (GNUPLOT)
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Analysis of uncorrelated data
Analysis of correlated data

Extrapolation

Single Histogram Reweighting

We have the following identity

〈O〉β′ =

∫
dEO(E)ρ(E)e−(β′−β)Ee−βE∫

dEρ(E)e−(β′−β)Ee−βE =
〈Oe−∆βE〉β
〈e−∆βE〉β

In principle by simulating only at one β we can obtain results for
any β
In practice a Monte Carlo will never generate configurations
with very low probability⇒ we have information only for those
βs for which 〈U〉rew is less than 2σ apart from 〈U〉orig

More sophisticated method: Multi Histogram
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Analysis of uncorrelated data
Analysis of correlated data

Extrapolation

Reweighting for the Gaussian model

Starting point: β = 0.9
Biagio Lucini Monte Carlo Methods



Monte Carlo in practice
The Gaussian system

The harmonic oscillator
The anharmonic oscillator

References

Monte Carlo praxis

Identify the fundamental variables and the observables
Write an update algorithm for the fundamental variables
Write a measurement routine for the observables (store the
values in a file for off-line analysis)
Run the Monte Carlo with sensible parameters
(thermalisation time, total number of measurements,
number of sweeps between two measurements)
Perform off-line the error analysis using binning and
Jack-Knife
If requested do some reweighting
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Monte Carlo in practice
The Gaussian system

The harmonic oscillator
The anharmonic oscillator

References

Exercise 1: the Gaussian System

For the Gaussian system described in these notes
write a Metropolis update algorithm
write a routine that measures x2

run the Monte Carlo at β = 0.1,1,10 measuring x2

for each β reweight the results for x2 at the other βs and
comment the agreement/disagreement with the expected
results
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Monte Carlo in practice
The Gaussian system

The harmonic oscillator
The anharmonic oscillator

References

Metropolis for the Gaussian System - I

Familiarise with the V.B. Random number generator and
make sure you can extract random numbers between 0
and 1
start with x0 = 1 and define a variable α
write an algorithm that computes

y = xn − 2ar + a

with r random number and a = 0.1 to start with
compute

P = e−β(y2−x2)

Biagio Lucini Monte Carlo Methods



Monte Carlo in practice
The Gaussian system

The harmonic oscillator
The anharmonic oscillator

References

Metropolis for the Gaussian System - I

If P > 1 xn+1 = y
if P < 1 generate a random number r1 in [0;1[

1 if r1 < P xn+1 = y
2 if r1 > P xn+1 = xn

generate a new y and repeat the process
record xn+1 in a file The process that generate xn+1 from
xn (whether they are equal or not) is called “sweep”
After N sweeps we generate the sequence x1, . . . , xN
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Monte Carlo in practice
The Gaussian system

The harmonic oscillator
The anharmonic oscillator

References

Thermalisation

To reach the statistical equilibrium the system needs a given
number of sweeps NT
The thermal equilibrium is defined by the average of the
observable not changing within errors when changing the
number of the sweeps
In practice, we do the following

1 discard N1 sweeps at the beginning
2 divide the remaining ones in two samples with the same

number of measurements
3 compute the average of the observables in the two

samples and compare
4 if there is agreement we are at equilibrium, otherwise we

discard more sweeps
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Monte Carlo in practice
The Gaussian system

The harmonic oscillator
The anharmonic oscillator

References

Acceptance

The parameter a should be tuned in such a way that the system
does not get stuck at some xn (likely if a is big), nor moves
slowly (if a is small)

This can be quantified by introducing the concept of
acceptance: if xn+1 6= xn our attempt at changing the variable
has succeeded, otherwise it has failed.

The acceptance is defined as the ratio between the number of
success over the number of sweeps; a rule of thumb is having it
between 0.5 and 0.8, and we use this to choose a

Warning: the acceptance should not take into account
thermalisation
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Monte Carlo in practice
The Gaussian system

The harmonic oscillator
The anharmonic oscillator

References

Measurements

To measure an observable (e.g. x2) we record the set of the xN
on a file and we take the simple averages

The statistical analysis should use the binning plus Jack-knife
method, as described earlier, and should allow to identify τexp

To estimate the observable at another value of β we use
reweighting:

〈x2〉β′ =
〈x2e∆βx2〉β
〈e∆βx2〉β

, ∆β = β − β′
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Monte Carlo in practice
The Gaussian system

The harmonic oscillator
The anharmonic oscillator

References

Exercise II - The harmonic oscillator

The system described by the discretised action

SE =
N∑

i=1

(
1
2

m(xi+1 − xi)
2 +

1
2
µ2x2

i

)
with µ the elastic constant and m the mass (all variables and
parameters are adimensional, i.e. pure numbers, in this
problem)
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Monte Carlo in practice
The Gaussian system

The harmonic oscillator
The anharmonic oscillator

References

Step 1: Monte Carlo Simulations

Generalise the Metropolis algorithm for the Gaussian
system to the harmonic oscillator
How do you choose tf and the lattice spacing? (justify)
Run the code for m = 1.0 and µ = 1.0 for 10000 iterations
(each iteration is tf in length) and record x at the end of
each iteration
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Monte Carlo in practice
The Gaussian system

The harmonic oscillator
The anharmonic oscillator

References

Step 2: ground state energy

The virial theorem allows to write the energy of the ground state
as

E0 = µ2〈x2〉

Based on the Monte Carlo ensemble generated at Step 1,
compute E0
Discuss carefully the errors
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Monte Carlo in practice
The Gaussian system

The harmonic oscillator
The anharmonic oscillator
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Step 3: reweighting

From the simulation performed, reweight the ground state
energy to the points obtained by

fixing m = 1.0 and taking µ2 = 0.1 and µ2 = 10
fixing µ2 = 1.0 and taking m = 0.1 and m = 10
taking m = 0.2 and µ2 = 0.5

Comment on the reliability of the results
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Monte Carlo in practice
The Gaussian system

The harmonic oscillator
The anharmonic oscillator

References

Step 4: ground state wave function

For m = 1, sort the measured ensemble of the x from the
smallest to the largest
Divide the interval in 100 bins of equal length and count how
many data are in each bin
Assign this number to a function f (x), where x is the central
value of the bin, and take

√
f (x) as the error on f (x)

Fit f (x) with the formula

f (x) =
(ω
π

)1/2
e−ωx2

,

and compare ω with the expected value

ω = µ

√
1 +

µ2

4
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Monte Carlo in practice
The Gaussian system

The harmonic oscillator
The anharmonic oscillator
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Step 5: first excited state energy

Define the quantity

∆E(τ) = log
〈x(0)x(τ + 1)〉
〈x(0)x(τ)〉

Measure ∆E(τ) for τ = 1,2, . . . ,10
Show that at large τ ∆E reaches a plateau
Fit this plateau with the function f (τ) = c, determining in
this way the value of c

The energy of the first excited state can be obtained as

E1 = E0 + c
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Monte Carlo in practice
The Gaussian system

The harmonic oscillator
The anharmonic oscillator
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Exercise III - The anharmonic oscillator

Consider the harmonic oscillator with the additional term
λ
∑

i x4
i ; now

E0 = µ2〈x2〉+ 3λ〈x4〉 ,

while all other formulas stay the same
After generalising the Monte Carlo to this case, compute
the energy of the ground state and of the first excited state
for m = 1.0, M = 1.0 and λ = 0.2, 1.0,5.0
For the λ = 1.0, evaluate the probability distribution for x in
the ground state (i.e. the square of the wave function) with
a binning procedure similar to that described for the
harmonic oscillator
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