Modelling Project 2 Quarkonia

Work to be done in weeks 5-11 Report due in 15/12/05 Presentation 16/12/05

Introduction And Aim

- Quarks are only seen in three quark (qq) states (baryons) or quark-antiquark (qq) states (mesons) Confinement
- Can we model the meson states using non-relativistic quantum mechanics with a suitable potential?

Hydrogen- A Warm Up

- The hydrogen atom can be solved analytically
- You have been taught how to do this
- Only the potential differs from quarkonia
- An idea warm-up example

The Hydrogen Potential

 At all distances we expect a Coulomb like, 1/r, potential

• Take

 $V(r) = \sum_{r=1}^{r}$

ρ

Analytic Preamble H1

Book Work for the H atom

- Start with the Schrodinger equation
 - Remember to use the reduced mass
- Pick a suitable coordinate system
 - Think about the symmetry of the problem
- Solve the parts that the symmetry makes
 - easy in terms of a set of basis functions
- Obtain a differential equation for the remaining (radial) part

Analytic Preamble H2

- Understand the radial equation
 - Find the short distance behaviours
 - Typically try a power series solution
 - Find the long distance behaviours
 - Use substitutions like $\psi = r^p \phi$ to get rid of the first derivative term
 - Then look for the long distance solution
 - Look for a general solution
 - Power series solutions are the most likely
 - Try substitutions like ψ =r^p e^{αr} φ to get a nice 2 term recurrence relation
 - Get the eigenvalues analytically

Pre-Numerical Analysis H

- Find the values of all the constants
 - The computer needs the numbers
 - Remember the c's and h's
- Pick suitable scales
 - Here, what is a sensible scale for r?
 - Set r=λρ where λ is a length and ρ runs from 0 to 10 (say) across the region of interest
- Write the radial equation in terms of the scaled variables and corresponding constants
 - If you give the computer sensibly sized numbers, you'll have a better idea of the sort of numbers it should give you

Numerical Considerations H

- What type of problem do we have?
 - Ordinary differential equation
 - With two point boundary conditions
- Which approach should we use?
 - Shooting
 - + Intuitive
 - + Relatively easy to code
 - Best suited for single point boundary conditions
 - + Shoot and jiggle often runs reasonably fast
 - Relaxation
 - + best suited to two point boundary conditions
 - + can run very quickly
 - coding relatively involved

Shooting Methods

- Runge–Kutta probably simplest
 - What order?
 - Coding time vs. running time
 - 1st order
 - » quick to code but slow to run
 - 4th order
 - » Typical work horse
 - » Should be in everyone's library
- Accuracy Control
 - How will we estimate the accuracy of the solution?
 - When will we estimate the accuracy of the solution?
- Grid sizing
 - Fixed
 - Easy to code but not necessarily quick to run
 - Adaptive
 - Needs run-time accuracy estimation

Pick a Language

- For this project you will use a high level language
 - Visual Basic
 - You've used this before
 - Available on all lab PCs
 - Nice help pages on Chris Allton's home page
 - Only works under windows
 - Fortran
 - Prehistoric but still going
 - The scientific language of choice for many years
 - C
 - A bit more modern (but hardly cutting edge)
 - Universal
 - Available under Linux on PCs in 413

Intermediate Tasks/Check Points

- Check Point A: Analytic Preparation for H
 - Scaled radial equation with numerical coefficients
 - Clear statement of allowed values of all constants

Check Point B: Numerical solution for H

- A tested code implementing the method of your choice
- A range of numerical eigenvalues and accuracy estimates

The Real Thing

- Quarkonia
- Quark/anti-quark bound state
 - (rather than proton/electon bound state)
- Different potential
- Two particles may have same mass

The Potential

- At short distances we expect a Coulomb like, 1/r, potential
 At long distances a constant force gives
 - confinement
 - This needs a linear potential
- Take

$$V(\mathbf{r}) = \beta$$

Analytic Preamble Q1

 Book Work – just like the H atom Start with the Schrodinger equation Remember to use the reduced mass - Pick a suitable coordinate system Think about the symmetry of the problem Solve the parts that the symmetry makes easy in terms of a set of basis functions - Obtain a differential equation for the remaining (radial) part

Analytic Preamble Q2

- Understand the radial equation
 - Find the short distance behaviours
 - Typically try a power series solution
 - Find the long distance behaviours
 - Use substitutions like ψ =r^p φ to get rid of the first derivative term
 - Then look for the long distance solution
 - Look for a general solution
 - Power series solutions are the most likely
 - Try substitutions like $\psi = r^p e^{\alpha r} \phi$ to get a nice 2 term recurrence relation
 - If you're lucky get the eigenvalues analytically and forget the computer

Pre-Numerical Analysis Q

- Find the values of all the constants
 - The computer needs the numbers
 - Remember the c's and h's
- Pick suitable scales
 - Here, what is a sensible scale for r?
 - Set r=λρ where λ is a length and ρ runs from 0 to 10 (say) across the region of interest
- Write the radial equation in terms of the scaled variables and corresponding constants
 - If you give the computer sensibly sized numbers, you'll have a better idea of the sort of numbers it should give you

Numerical Considerations Q

Just as for hydrogen-What method? What language?

Intermediate Tasks/Check Points

- Check Point C: Eigenvalues for Quarkonia
 - Find the radial equation for quarkonia
 - Find the energy eigenvalues numerically for any given set of parameters in the potential
- Final Aim: Your Spectrum vs. The Data
 - Can you reproduce any part of the spectrum of meson masses?
 - What are the best parameters to use?
 - How good is the correspondence?

Assessment

 Report - Due 16/12/05 - Counts for 1/2 of module mark Presentation - To be given on 15/12/05 – Counts for 1/6 of the module mark - 20 minutes to the group - Powerpoint (or equivalent)

Shooting Methods

- Runge–Kutta probably simplest
 - What order?
 - Coding time vs. running time
 - 1st order
 - » quick to code but slow to run
 - 4th order
 - » Typical work horse
 - » Should be in everyone's library
- Accuracy Control
 - How will we estimate the accuracy of the solution?
 - When will we estimate the accuracy of the solution?
- Grid sizing
 - Fixed
 - Easy to code but not necessarily quick to run
 - Adaptive
 - Needs run-time accuracy estimation

Pick a Language

- For this project you will use a high level language
 - Visual Basic
 - You've used this before
 - Available on all lab PCs
 - Nice help pages on Chris Allton's home page
 - Only works under windows
 - Fortran
 - Prehistoric but still going
 - The scientific language of choice for many years
 - C
 - A bit more modern (but hardly cutting edge)
 - Universal
 - Available under Linux on PCs in 413

Pick a Language

- For this project you will use a high level language
 - Visual Basic
 - You've used this before
 - Available on all lab PCs
 - Nice help pages on Chris Allton's home page
 - Only works under windows
 - Fortran
 - Prehistoric but still going
 - The scientific language of choice for many years
 - C
 - A bit more modern (but hardly cutting edge)
 - Universal
 - Available under Linux on PCs in 413

Intermediate Tasks/Check Points

- Check Point A: Analytic Preparation
 - Scaled radial equation with numerical coefficients
 - Table of measured meson masses and quark content
- Check Point B: Utility Differential Eq'n Solver
 - A tested utility code implementing the method of your choice
 - This should be easily adaptable to solve a range of equations
 - (These strands may run concurrently)

Numerical Considerations

- What type of problem do we have?
 - Ordinary differential equation
 - With two point boundary conditions
- Which approach should we use?
 - Shooting
 - + Intuitive
 - + Relatively easy to code
 - Best suited for single point boundary conditions
 - + Shoot and jiggle often runs reasonably fast
 - Relaxation
 - + best suited to two point boundary conditions
 - + can run very quickly
 - coding relatively involved