
Blue Gene/Q supports four hardware threads per
core, with 1 6 cores per node. Multithreading gives
no benefit to the comms or balanced theories, but
does give a small benefit to the compute theory

Architectures
Three different machines were tested

• Blue Gene/P:

○ 4 cores/node, 1 thread/core, 32-bit PowerPC CPU
at 850MHz, 1 MPI process per core

○ Nodes connected by high-speed 3D torus

○ 4GB RAM, 8kB L2, 4MB L3 cache per node

○ IBM XL C compiler 9.0 for Blue Gene

• Blue Gene/Q:

○ 1 6 compute cores/node, 4 threads/core, 64-bit
PowerPC CPU at 1 .6GHz, 1 MPI process per core

○ Nodes connected by high-speed 5D torus

○ 1 6GB RAM, 32MB L2 cache per node

○ IBM XL C compiler 1 2.0 for Blue Gene

• x86 cluster:

○ 1 6 cores/node, 1 thread/core, 2 × Opteron 61 28
CPU/node, 1 MPI process per core

○ Nodes connected by 1 GigE (no Infiniband)

○ 96GB RAM, 8MB L2, 24MB L3 cache per node

○ GCC 4.1 .2
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BSMBench: A HPC Benchmark for

Beyond the Standard Model Lattice Physics

What is Lattice QCD?
• Quantum Chromodynamics is a Quantum Field Theory
(QFT) of the strong interaction, which binds atomic
nuclei together

• It cannot be solved analytically

• A numerical solution is possible after discretising
spacetime onto a four-dimensional lattice of discrete
points.

What is BSM?
• Beyond the Standard Model physics seeks to
generalise QCD to explain new physics

• Fundamental variables are:

○ an matrix on each link (QCD fixes )

○ a vector (spinor field) comprising either or
values on each site; QCD has the former

Lattice Computations
• Lattice volume (number of sites)

○ Parallelisation splits lattice into parts, one per
process

• Key quantity is the Dirac operator, a large, sparse
matrix acting on all spinor variables

• Main computations involve inverting this matrix on
selected vectors

Why is HPC necessary?
• Smallest lattices wil l fit on a desktop (44 lattice)

• Current research looks at 1 284 lattices (and beyond) –
on a desktop this would require ~1 50GB RAM, ~1 04
CPU-years per data point

• BSM code can require more power again

• This is using state-of-the-art numerical techniques to
minimise the amount of compute power necessary

Benchmarks
• QCD is already used to benchmark supercomputers [1 ]

• QCD codes place roughly equal demands on
communications and compute speed

• BSM codes vary this

• BSM-derived benchmark allows more flexible testing
of a machine's characteristics

○ Testing of machine's suitabil ity for a given theory

○ More general communications/compute
comparisons

HiRep
• Chroma (described in [2]), the most common publicly-
available lattice code, only deals with QCD-like
theories

• HiRep (described in [3], [4]) has been developed to be
more flexible

○ Allows varying of , type of spinor field

• Forms a complete, state-of-the-art suite for lattice BSM
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sqnorm test
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Dphi test

Square norm test demands less of inter-node
communications; shows approximate scaling on all machines

Dirac operator application is more physically demonstrative;
drop in performance on non-Infiniband cluster highlights
higher demands placed on inter-node communications
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Blue Gene Comparison

Blue Gene/Q x86 clusterBlue Gene/P

Compute testBalance testComms test

Rack-for-rack comparison between 1 28×643
lattice on Blue Gene/Q and equivalent data from

a 64×323 lattice on Blue Gene/P

Processor Subdivision on Blue Gene/Q

github.com/blucini/BSMBench

ABSTRACT: Beyond the StandardModel (BSM) Lattice Physics is a growing area ofcomputational theoretical physics encompassing extensions to/modifications of lattice QCD, which requires
increasingly powerful machines. Depending on the theory under investigation, it can place greater demands on either the communications or the compute performance ofa multi-node

environment, relative to lattice QCD. Lattice QCD has been used to benchmark machines for many years. To allow for more accurate analysis ofmachines' suitability for a particular theory,
as well as a more general analysis ofmachine's performance than a QCD benchmark would give, we present a new tool to benchmark the performance of some BSM theories, using a

method close to that of Lüscher (2002), but based on the HiRep code ofPica, et al. (2009, 2010). Three regimes are probed; one QCD-like regime balancing demands on communications
and compute power, and two emphasising each of those over the other. Some initial benchmark statistics are included for clusters, Blue Gene/P, and Blue Gene/Qmachines.

Benchmark Strategy
Based on that of Lüscher (described in [5])

• Consistency check of arithmetic

○ Not used for performance analysis

○ Omitted for small machines

• Three operations tested for a given period of time

○ Spinor field square norm (sqnorm)

○ Spinor field multiply-add (mad) (not shown)

○ Dirac operator application (Dphi)

• FLOPs counted, performance reported

• Three regimes tested:

○ “Comms” – communications-intensive
theory, 2 adjoint fermions

○ “Balance” – QCD-like
theory, 2 fundamental fermions

○ “Compute” – computationally-intensive
theory, 2 fundamental fermions

• Single lattice size of 64×323 used to allow direct
comparison between machine sizes

• Based on the HiRep code

Conclusions
• Three machines tested: Blue Gene/P, Blue Gene/Q,
and an x86 cluster without Infiniband.

• Square norm less demanding of communications;
speed scales well beyond node size on cluster

• Dphi test is communications-intensive:

○ Speed scales well on Blue Gene

○ Speed drops off once exceeding node size of non-
Infiniband cluster

• BGQ 4–5 times faster than BGP per rack

• Multithreading cores can have modest benefit to some
theories

Results




